Population genetics of Mediterranean and Saharan olives: geographic patterns of differentiation and evidence for early generations of admixture.
نویسندگان
چکیده
BACKGROUND AND AIMS The olive (Olea europaea subsp. europaea) was domesticated in the Mediterranean area but its wild relatives are distributed over three continents, from the Mediterranean basin to South Africa and south-western Asia. Recent studies suggested that this crop originated in the Levant while a secondary diversification occurred in most westward areas. A possible contribution of the Saharan subspecies (subsp. laperrinei) has been highlighted, but the data available were too limited to draw definite conclusions. Here, patterns of genetic differentiation in the Mediterranean and Saharan olives are analysed to test for recent admixture between these taxa. METHODS Nuclear microsatellite and plastid DNA (ptDNA) data were compiled from previous studies and completed for a sample of 470 cultivars, 390 wild Mediterranean trees and 270 Saharan olives. A network was reconstructed for the ptDNA haplotypes, while a Bayesian clustering method was applied to identify the main gene pools in the data set and then simulate and test for early generations of admixture between Mediterranean and Saharan olives. KEY RESULTS Four lineages of ptDNA haplotypes are recognized: three from the Mediterranean basin and one from the Sahara. Only one haplotype, primarily distributed in the Sahara, is shared between laperrinei and europaea. This haplotype is detected once in 'Dhokar', a cultivar from the Maghreb. Nuclear microsatellites show geographic patterns of genetic differentiation in the Mediterranean olive that reflect the primary origins of cultivars in the Levant, and indicate a high genetic differentiation between europaea and laperrinei. No first-generation hybrid between europaea and laperrinei is detected, but recent, reciprocal admixture between Mediterranean and Saharan subspecies is found in a few accessions, including 'Dhokar'. CONCLUSIONS This study reports for the first time admixture between Mediterranean and Saharan olives. Although its contribution remains limited, Laperrine's olive has been involved in the diversification of cultivated olives.
منابع مشابه
Genetic diversity and population structure of wild olives from the North-Western Mediterranean assessed by SSR markers.
BACKGROUND AND AIMS This study examines the pattern of genetic variability and genetic relationships of wild olive (Olea europaea subsp. europaea var. sylvestris) populations in the north-western Mediterranean. Recent bottleneck events are also assessed and an investigation is made of the underlying population structure of the wild olive populations. METHODS The genetic variation within and b...
متن کاملExploring population admixture dynamics via empirical and simulated genome-wide distribution of ancestral chromosomal segments.
The processes of genetic admixture determine the haplotype structure and linkage disequilibrium patterns of the admixed population, which is important for medical and evolutionary studies. However, most previous studies do not consider the inherent complexity of admixture processes. Here we proposed two approaches to explore population admixture dynamics, and we demonstrated, by analyzing genom...
متن کاملThe Effects of Migration and Assortative Mating on Admixture Linkage Disequilibrium.
Statistical models in medical and population genetics typically assume that individuals assort randomly in a population. While this simplifies model complexity, it contradicts an increasing body of evidence of nonrandom mating in human populations. Specifically, it has been shown that assortative mating is significantly affected by genomic ancestry. In this work, we examine the effects of ances...
متن کاملThe Spatial Mixing of Genomes in Secondary Contact Zones.
Recent genomic studies have highlighted the important role of admixture in shaping genome-wide patterns of diversity. Past admixture leaves a population genomic signature of linkage disequilibrium (LD), reflecting the mixing of parental chromosomes by segregation and recombination. These patterns of LD can be used to infer the timing of admixture, but the results of inference can depend strongl...
متن کاملMultilocus Bayesian Estimates of Intra-Oceanic Genetic Differentiation, Connectivity, and Admixture in Atlantic Swordfish (Xiphias gladius L.)
Previous genetic studies of Atlantic swordfish (Xiphias gladius L.) revealed significant differentiation among Mediterranean, North Atlantic and South Atlantic populations using both mitochondrial and nuclear DNA data. However, limitations in geographic sampling coverage, and the use of single loci, precluded an accurate placement of boundaries and of estimates of admixture. In this study, we p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 112 7 شماره
صفحات -
تاریخ انتشار 2013